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ABSTRACT 

The ratio of gamma heating per gram of tungsten to gamma heating per gram of water 
was calculated for the case of a thin tungsten detector in a water shield. One-dimensional 
transport theory calculations were used to obtain response polynomials which predict this 
ratio as a function of source energy, shield thickness, and detector thickness. Electron 
transport effects were also examined. Useful results a r e  presented in the form of graphs. 
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GAMMA HEATING IN THIN HEAVY-ELEMENT ABSORBERS 

by John H. Lynch, Richard J. Crum, and Harry J. Reil ly 

Lewis Research Center 

SUMMARY 

Two effects must be considered when converting the gamma heating rate measured 
using an aqueous dosimeter to the gamma heating rate in a thin tungsten detector im- 
mersed in a water shield. These are, first, the difference in heating due to the differ- 
ence between the mass energy absorption coefficients of the heavy detector and the aque- 
ous dosimeter, and second, the "skin heating effect. t f l  The measured heating rates 
must be corrected to account for these effects. Calculated thin detector heating rates 
which are obtained using the buildup factor method also require correction for these ef- 
fects because the buildup factor does not take into account any physical properties of the 
detector. 

One-dimensional photon transport-theory calculations were performed to obtain cor- 
rection factors for these effects for tungsten detectors in a water shield. The results of 
these calculations were used to construct polynomial equations which predict the com- 
bined magnitude of the effects as a function of gamma source energy (from 0.255 to 
4.0 MeV), water-shield thickness (from 4.0 to 44.0 cm), and tungsten-detector thickness 
(from 0.00254 to 0.762 cm). Polynomials were also obtained for the gamma heating 
(W/g) in water and in tungsten so that multienergy sources can be analyzed. 

around the center point (2.128-MeV source, 24.0-cm water shield, and 0.044-cm de- 
tector) was examined using these polynomials. This ratio was also investigated for a 
fission spectrum source. The ratio was less than two for detector thickness greater than 
0.2 centimeter. The polynomials f i t  the data with an average absolute error of less than 
10.2 percent. 

The behavior of the correction factor (W/g in tungsten divided by W/g in water) 

'The "skin heating effect" is the increased gamma heating that occurs near the sur- 
face of the detector. This heating results from the influx of a large quantity of low- 
energy Compton scattered gammas. These gammas are absorbed locally due to the 
large photoelectric cross sections of the heavy element detector. 



INTRODUCTION 

Reactor irradiation experiments may have substantial internal heating by gamma rays 
from the core and surrounding structures. Often it is important to measure the amount of 
gamma heat either for heat-transfer design calculations or to determine effects on tem- 
perature measurements. 

Gamma heating at a given location in water or other light elements can be determined 
using conventional aqueous detectors such as ferrous sulfate dosimeters. However, such 
detectors, although convenient to use, do not give gamma energy spectral information 
which is needed to compute what the heating would be at the same location using a heavy 
element such as tungsten. 

first to measure the gamma heating using an aqueous dosimeter, obtaining watts per gram 
in water. This watts per gram is multiplied by the mass of an experiment component to 
obtain the heat generation in that component. The result is then multiplied by a correction 
factor for the mass energy absorption coefficient and skin-heating effects. 

There has been a lack of good information on these correction factors. The problem 
has been identified in the literature (refs. 1 to 3), but the choice of the correction factors 
has remained mostly a matter of engineering judgment. It is the purpose of this report to 
show accurate calculated values for these correction factors for the most general case of 
a point source and a shell detector. Also shown are the calculational model and the syn- 
thetic experiment design techniques that were used to select the calculations that were 
performed. The results are presented in the form of polynomial response equations. 
Special cases of interest are shown, and applications of the results are discussed at the 
conclusion of the report. 

Therefore a conventional way to do design calculations involving heavy elements is 

SYMBOLS 

'09 An' *nn 

EO 

E 

F 

F' 

f 

P 

R 

2 

constant term or coefficient in a response equation 

energy, MeV 

uncoded source energy, MeV 

gamma heating correction factor from response equation 

computed gamma heating correction factor from transport calculations 

fraction of electron energy lost while escaping 

escape probability for electrons 

extrapolated range of electrons in tungsten, cm 



r 

S 

T 

t 

t* 

x1 

x2 

x3 
Y 

e 

* 
0 

radius coordinate in transport model, cm 

multienergy source, photons/(sec) (MeV) 

untransf ormed, uncoded tungsten- det ector thickness, cm 

untransformed, uncoded water- shield thickness, cm 

transformed, uncoded water- shield thickness 

coded source energy 

transformed and coded water-shield thickness 

tr ansf orrned and coded tungsten-detector thickness 

relative gamma heating, W/g 

plane angle corresponding to 

fraction of electron kinetic energy that is deposited in detector 

solid angle 

Subscripts : 

n, nn 

1 number of experiment 

Superscripts : 

w tungsten 

H20 water 

variable indicators in response equation 

METHOD OF ANALYSIS 

The model selected was  a point source of gammas immersed in a spherical water 
shield. The detector consisted of a spherical tungsten shell. A water backstop outside 
of the detector was used with a vacuum boundary condition (see fig. 1). Fluxes were ob- 
tained using DTF-IV, a discrete ordinates computer solution to the Boltzmann equations 
(ref. 4). Scattering cross sections were generated using GAMLEG (ref. 5). Gamma ab- 
sorption cross sections were taken from reference 6. Energy absorption coefficients 
were obtained using data from reference 7 corrected to include energy deposited by 
Compton scattering. To guarantee reliable answers, between 13 and 23 energy groups 
with S12 Gaussian angular quadrature were used with the P3 scattering approximation. 

The correction factor F was defined as the ratio of the gamma heating in the tung- 
sten detector to the gamma heating in a water detector having the same thickness and 
location (see eqs. (1) and (2)). This ratio was obtained from 15 sets of two companion 
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Point source, 
1 photonlsec Water 

Vacuum hackstop 
I c t  

Tungsten d e t e c t o r J / / e T  I 

Figure 1. - Geometrical model used in gamma transport calculations. 

calculations which were the same in all respects except that one calculation of each set 
had a tungsten detector and the other had a water detector. 

To obtain the maximum information possible from a limited amount of calculations, 
the correction factor was  studied using multivariate regression analysis. This analysis 
used the calculations as synthetic experiments in an orthogonal composite design (ref. 8). 
This approach produced a response polynomial that may be used to compute the correction 
factor for any values of the independent variables over the range of the variables studied. 
The independent variables selected were source energy, shield thickness (water thickness 
between the source and the tungsten), and detector thickness. A summary of the experi- 
ment statistical design is given in appendix A. 

squares f i t  based on minimizing the sum of the squares of the residuals would make the 
f i t  poor for the smaller values. For this reason the natural logarithm of the correction 
factor was f i t  instead of fitting the correction factor directly. This f i t  minimizes the sum 
of squares of the fractional errors at the observed points if the errors  a re  not large (see 
appendix A). 

The orthogonal composite design guarantees that the effects of independent variables 
and their interactions a re  truly separated (i. e., their correlation coefficients are zero). 
This gives the most accurate response equation. However, because the levels at which 
two the independent variables must be selected for orthogonality are undesirably spaced, 
new variables were defined which improved the fits. These were obtained by using cubic 
or logarithmic transformations of the originally selected base variables of shield thick- 
ness and detector thickness. These transformations are discussed in appendix A. 
Source energy was not transformed. 

Because the expected range of correction factors was from 1 to about 30, a least 

RESULTS 

The correction factor F for monoenergetic source gammas is defined as 
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F(t, T, Eo) 5 

2 yw(t, r, E)r dr dE 

>O(t7 r, E)r 2 dr  dE 

For multienergy sources, the appropriate F factor is defined by 

S(E)yw(t, r, E)r2 dr dE 

F(t, TI = . _  . 

H2° 2 S(E)y (t,r,E)r dr dE 

where 

S(E) multienergy source, photons/(sec) (MeV) 

yw(t7 r, E) gamma heating in tungsten, W/g 

y H2° (t, r, E) gamma heating in water, W/g 

The ranges of variables studied were 0.00254- to 0.762-centimeter detector thickness 
(T), 0.255- to 4.0-MeV source energy (Eo), and 4.0- to 44.0-centimeter water-shield 
thickness (t) . 
form of these polynomials is 

H2° Polynomials were generated for F(t, T, Eo), yw(t, T, Eo), and y (t, T, Eo). The 

where X1, X2, and X are coded and transformed values of the source energy, water- 

shield thickness, and tungsten-detector thickness, and K is F, yw, or $O. These 
independent variables a re  defined by equations (A2) to (A4) in appendix A. The polyno- 
mial coefficients are shown in table I. 
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TABLE I. - POLYNOMIAL COEFFICIENTS FOR EQUATION (3) 

2 oef f icient 

A0 
A1 
A2 
A3 
A11 
A12 

A22 

A33 

A13 

A2 3 

K = F(t, T, E, 

0.8301 

,1829 

.5137 

.4169 

-. 6221 

-. 8018 

-. 0084 

-. 1447 
-. 1614 

.0181 

1. 5922 
.2488 
-. 1784 
1.5433 
.0743 
. l l O l  
.4173 
-. 1342 
-. 1653 
.0770 

0.7640 
.8697 

-. 3605 
2.3412 
-. 4421 

.1205 
-. 0015 

.0119 

.0003 

.0558 

0 1 2 3 4 
Source energy, Eo, MeV 

24-centimeter water shield and a 0.044-centimeter tung- 
sten detector as function of source energy. 

Figure 2. - Gamma heating correction factor F for a 

In order to acquire some feel for the behavior of F(t, T, Eo) when the gamma 
source is monoenergetic, equation (3) was evaluated over the complete range of each in- 
dependent variable around the design center (figs. 2 to 4). These figures may be used 
when the independent variables are approximately those used to draw the curves. How- 
ever, because of the interaction terms, it is advisable to use equation (3) if an accurate 
F factor is desired. The polynomials are valid only over the range of variables studied. 
Hence, extrapolation, especially for thinner detectors, is not recommended. 

source (eq. (2)). Equation (2) was approximated for several water-shield and detector 
can be used to evaluate F for a multienergy The polynomials in yw and y H2° 
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2.5, 

0 
10-3 10-2 10-1 100 

Tungsten-detector thickness, T, cm 

Figure 4. - Gamma heating correction factor F for 2.128-MeV 
gammas and a 24-centimeter water shield as function of 
tungsten-detector thickness. 

Water-shield 
thickness. 

Tungsten-detector thickness, T, cm 

Figure 5. - Gamma heating correction factor F for fission 
spectrum gammas as function of tungsten-detector thick- 
ness T with water-shield thickness t as a parameter. 
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thicknesses by using a five-energy group representation of the Carver prompt plus de- 
layed fission gamma spectrum (ref. 9). These results are shown in figure 5. 

ERROR ANALYSIS 

Uncertainty in the Polynomial Fits 

H20 values obtained from Table II is a comparison of the calculated F, y , and y 
w 

the DTF calculations and the polynomial approximations of these values. The percent 
error at each point and statistical measures of accuracy are also given. The errors  at 
the experimental points provide a first-order estimate of the error that can be expected 
for intermediate points calculated using the polynomials (see experiments 16 and 17 shown 
in table 11). The statistical measures of f i t  tend to verify the selection of variables and to 
provide some indication of the overall error and dispersion in the fits. 

terval associated with equation (3) may be computed using 
If a more exact estimate of the uncertainty is desired, the 95-percent confidence in- 

Confidence interval = In F f 2. 57 Q 
(for In F) 

(4) 

where 

Q = 0.2158 0.0667 + 0.0913(X: + Xi +X:) + 0.2291(Xt + Xi + Xi) [ 
+ 0. 1250(X1X2 + X1X3 + X2X3) 211/2 

and 2.57 is the two-sided student t for 95-percent confidence with 5 degrees of freedom. 
This means that the true value of In F will lie in an interval whose bounds are *2. 57 Q 

from the polynomial approximation to In F. The constants in this equation were taken 
from the inverted sum - of - cro ss- pr oducts-deviations matrix (ref . 10). Confidence inter - 
vals about F for multienergy sources are complicated by the uncertainty in the integra- 
tion resulting from the energy group scheme selected. This uncertainty was not examined. 
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Use of Numerical Model 

Hopefully some of the inaccuracy due to the numerical model cancels when the results 
of separate solutions are divided to obtain F. There is no general way to assess the ac- 
curacy of an iterative finite difference model. However, because of the large number of 
energy groups, P3 scattering, fine mesh, and tight convergence used, the errors  due to 
numerical procedure should be small. 

Errors in Cross Sections 

A detailed discussion of estimated cross section errors  is given in reference 6. In 
general, the errors  can approach 10 percent below 50 KeV but probably do not exceed 3 
to 5 percent above 100 KeV. 

Electron T r a n sport Effects 

The F values obtained refer to total heat deposition. For the thinnest detectors, 
however, part of the heat is deposited outside of the detector due to transport and escape 
of the electrons. A first-order model shown in appendix B was used to construct a func- 
tion @, which is defined as the fraction of the electron kinetic energy that is retained in 
the tungsten detector as a function of initial electron energy. In the unperturbed calcula- 
tions (without the tungsten), the net electron transport is negligible. The @ function is 
shown in figure 6. 

Tungsten-detector 
thickness, 

.z- \.00254 

I I 
0 1 2 3 4 

Electron energy, E, MeV 

Figure 6. - Fraction of electron energy retained i n  tungsten 
detector. 
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The correction factor F becomes large only when most of the gamma flux incident 
on the detector is below 1.0 MeV when the photoelectric effect dominates the gamma heat- 
ing (e. g., from fig. 3 for a 2.128-MeV gamma source, F becomes appreciable with a 
few centimeters of water shield thickness). Figure 6 shows that for reactions below 
1 MeV and thicknesses as small as 0.025 centimeter, the correction for electron trans- 
port is small. For thinner detectors the F values should be corrected using the model 
shown in appendix B or a similar treatment. 

USES OF THESE RESULTS 

The polynomials presented here provide a convenient method for computation of heat- 
ing rates in tungsten using measurements made in water. The results have the quoted 
accuracy only for tungsten. However, it is reasonable to assume that other materials 
such as steel, lead, and uranium can be investigated using the same technique. In fact, 
it is suggested that the results given here could be used with reasonable success for other 
combinations of light element shields and heavy element detectors, given that they are 
treated in terms of some "equivalent thicknesses" of water detector and tungsten shield. 

Polynomials such as these could also possibly be used in the place of conventional 
buildup factors in line-of-sight calculations for thin detectors. That is, they provide a 
buildup factor that is a function of the detector in addition to being a function of pt of the 
shield. It should not be difficult to add such a feature to some of the widely used shield- 
ing codes of this type such as QADHD (ref. 11). 

The problem considered here has been examined as a gamma problem without speci- 
fying the type of nuclear reaction that is required to produce the gammas. When these 
results are used to correct gamma heating measurements made in a reactor environment, 
consideration should be given to the fact that secondary gammas from neutron captures in 
the water shield and tungsten detector were not included in this model. Calculation of the 
heating due to secondary gammas requires knowledge of the neutron flux and must be 
treated as a separate problem. When the conversion factors given here are used with 
point kernel integration codes, they can be applied directly. 

As has been noted, the results given here are conservative for very thin detectors 
in that electron losses from these detectors will carry some of the energy away from the 
detector to adjacent structures. The model shown for electron leakage should be useful 
for estimating this effect. Even with corrections for electron transport, however, the 
polynomials should not be used for absolute values of a variable greater than 1.2154. 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, June 26, 1968, 
12 0- 27 - 04- 54-22. 
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APPENDIX A 

Level Source energy, 

EO' 
MeV 

-6 0.255 
-1 .587 
0 2.128 
1 3.670 
6 4.000 

SUMMARY OF EXPERIMENT DESIGN 

Water-shield Detector 
thickness, thickness, 

cm cm 

4.00 0.002 54 
12.85 .00421 
24.00 .0440 
35.15 .460 
44.00 .762 

t, a T, a 

To gen rate the r sponse polynomials, 1 5  pairs of transport calculations were per- 
formed. Each pair was treated as an "experiment. ( ?  The experimental statistical design 
used was an orthogonal composite fractional factorial. Coded levels of independent vari- 
ables for each of the experiments are shown in figure 7. 

Maximum and minimum values were selected for each of the chosen independent vari- 
ables, and the intermediate values were linearly interpolated and coded as shown in refer- 
ence 6. The values used in the DTF calculations are given in table III. 

In order to distribute the calculational information more uniformly over the range of 

-6 -1. -1. 0 0 0 1. 1. 6 X1 level 
0 -1. 1. -6 0 6 -1. 1. 0 X2 level 

-b 

-1. 

0 

1. 

6 
Xg levc 

Figure 7. - Experimental design. (6 = fi.2154 = the 
value of the highest and lowest levels; numbers 
i n  blocks are experiment numbers, 1.1 

TABLE III. - VALUES OF INDEPENDENT 

VARIABLES USED IN DTF 

CALCULATIONS 
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water-shield thickness selected for study, the water thicknesses shown in table III were 
used in the DTF calculations. To maintain the orthogonality of the experiment design, 
the water-shield thickness t was transformed to the new variable t* using 

Also, since the detector thickness effects were anticipated to be largest for the thinnest 
detector, the level spacing dictated by the orthogonal design did not provide information 
in the region of highest importance. For this reason, the log of the detector thickness 
was used as the third variable rather than the dector thickness. 

tion of the polynomials are 
The equations that define the coded and transformed X values required for evalua- 

Eo - 2.128 
x1 = 

1.541 

x2 ~ (t - 2 4 . 0 ) ~ / 3  
11.15 

In T -I- 3.124 
2.347 

x3 E 

Coded versions of the polynomials have been used here because the resulting response is 
not as sensitive to e r rors  in independent variables as would be the response from polyno- 
mials using uncoded input. 

The least squares fitting procedure minimizes the sum of squares of residuals at ob- 
served points. For the gamma heating correction factor, for example, it is desirable to 
obtain a f i t  which is as reliable for low values as it is for high ones. To accomplish this, 
the f i t  was made to In F instead of F. The quantity that was minimized was then 

The primes in equation (A5) denote observed values of F. If the log is expanded for a 
small argument (assuming that dF, the error  in F, is small), equation (A5) becomes 
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(Fr = function minimized by least squares 
1 

1=1 

This gave a much better fit to the data than the f i t  of F directly because fractional er- 

and y . 
rors were being minimized. This reasoning was also used with the polynomials for y W 

H2° 
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APPENDIX B 

DERIVATION OF I+J 

A function + was derived which showed, to first order, the fraction of the calculated 
gamma heating that is retained in the tungsten detector. The + function is defined as 

Number of electrons Number of electrons that do escape times the fractio 
of their energy given up while escaping that do not escape ) +( 

Total number of electrons generated 
+ =  

= 1 - P(1- f) (B1) 

where 

P electron escape probability 

f fraction of electron energy that is lost during escape 

To obtain P, two cases must be considered. First, when R, the extrapolated range of 
the electrons (ref. 12), is greater than or equal to T, the detector thickness, the escape 
probability is given by 

2R 
JT& 

Tungsten detector 

0 ,X 

Figure 8. -Slab model used to obtain P when R? T. 
(The sum of the solid angles, obtained by rotating 
R about the X axis, divided by 4n gives the prob- 
ability of escape for an electron born at X. This is 
integrated over X and divided by T to obtain P 
when R2T.l 
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where the slab model of figure 8 has been used to define 
the plane angles corresponding to the solid angles obtained by rotating the range vector R 
about the X axis. When R I  T, a similar integration gives 

and e2. These angles are 

R p=--  
2T 

To obtain f, the average distance F through the tungsten travelled by an escaping elec- 
tron is first computed. This is used with the range energy relation (ref. 12) to compute 
the energy required (energy lost) to travel this distance. The fraction of energy lost dur- 
ing escape is this energy divided by the initial energy of the electron. The initial energy 
is assumed to be that of the photon causing the reaction. 

When R 2  T, 

where use has again been made of the slab model shown in figure 8 and ac is the solid 
angle corresponding to r = R. 

When R 5 T, a similar integration gives 

- R  r = -  
2 

Figure 6 was constructed using equations (B2) to (B5) in equation (Bl). 
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